James and the Giant Corn Genetics: Studying the Source Code of Nature

March 30, 2017

Dichanthelium oligosanthes (One in a Thousand Series)

Filed under: biology,evolution,genomics,One in One Thousand — James @ 8:46 am

Inflorescence of Dichanthelium oligosanthes. Accession “Kellogg 1175”

Out of the ~12,000 known grass species, the genomes of less than one in one thousand have been sequenced. The “One in a Thousand” series focuses on these rare grass species.

Dichanthelium oligosanthes is a wild grass that grows in forest glades throughout the American midwest. It is a small plant. Doesn’t grow particularly fast. Its flowers aren’t particularly striking. And it has enough issues with seed dormancy that growing it in captivity is a major pain. Dichanthelium is a one in one-thousand grass with a sequenced reference genome.*

The reason folks are interested in Dichanthelium isn’t because of what it is, but who it’s related to. Dichanthelium occupies a spot on the grass family tree between a tribe** of grasses that includes foxtail millet and switchgrass, each one in a thousand species themselves, and another tribe of grasses that includes corn and sorghum, two more one in a thousand species. The relationship looks something like this:

Phylogenetic relationship of Dichanthelium oligosanthes to related grasses with sequenced genomes.

(more…)

June 1, 2010

Transposons: The Difference Between Junk DNA and Selfish DNA

Filed under: biology,evolution,genomics — Tags: — James @ 3:47 pm

Tranposons are one of those really cool features of genomes that never really seem to make the jump into the public eye. Most people at least have some conception of what a gene is. It’s a piece of DNA that contains the instructions for making a protein plays some role in the cell. A lot of other people can recall hearing an off-hand statistic only some tiny fraction of the human genome is made up of genes, with the rest being “junk DNA”. The question of why most of our genomes have no apparent function is why there’s a slow trickle of scientific research that gets picked up in the popular press as “scientistists discover junk DNA not junk after all!”.

But the reason most of genetics-genomics people aren’t in a huge rush to discover the hidden function behind most of this “junk DNA” is because we KNOW what most of it does and where it comes from. It’s not junk, it’s selfish DNA. <– although there’s certainly lots of cool stuff remaining to be discovered in the much smaller fractions of genomes we can’t classify at all. (more…)

March 3, 2010

Oliva Judson’s Salute to Grasses

Filed under: biology,evolution,Genetics,Plants — Tags: , , , , — James @ 2:33 pm

People who can actually get the general public interested in science are almost as rare as hen’s teeth.* One of those gifted scientist-communicators is Olivia Judson, an english evolutionary biologist who sometimes writes a column for the nytimes and published an interesting/hilarious pop-science book titled: Dr. Tatiana’s Sex Advice to All Creation: The Definitive Guide to the Evolutionary Biology of Sex.**

I mention all this to explain why I was so excited to learn that her post this week sings the praises of a group of species near and dear to my heart, the grasses. The whole post is definitely worth a read. Even if you don’t learn something you didn’t already know, read it as a source of inspiration for telling OTHER people how cool grasses are. And the closing is truly excellent:

We usually talk of our domestication of grasses, and the ways in which we have evolved them: we have made plants with bigger, more nutritious seeds that don’t fall to the ground, for example.But their effect on us has been far more profound. Our domestication of grasses, 10,000 years ago or so, allowed the building of the first cities, and marks the start of civilization as we know it. Grasses thus enabled the flowering of a new kind of evolution, a kind not seen before in the history of life: the evolution of human culture.

Some of the comments are heart warming to read as well, although a bunch of people have fallen prey to the maize/corn confusion. (Explained in detail here)

*Speaking of cool science that most of the general public doesn’t know about: We’ve known for more than four years that mutations of the gene talpid2 in chickens cause chicken embyros to develop teeth, something we thought birds had lost the ability to do 60-80 million years ago (around the same time grass was bursting onto the world stage.) Don’t worry too much about getting bitten by a sabertoothed turkey, the toothed embryos have other problems that mean they don’t survive.

**There’s also a three-part video series based on the book that I can best describe as … odd.

February 11, 2010

Why to Celebrate the Publication of the Brachypodium Genome

Brachypodium distachyon (photo courtesy of Devin O'Conner)

Sorry this is late going up. -James

This morning Nature officially published the paper* describing the sequence of the Brachypodium distachyon genome. This publication brings the number of grass genomes available for comparative analysis to four. In celebration I’m going to list four reasons to be excited about the publication of this genome.

The location of Brachypodium within the grass family tree.

Brachy (as I will refer to the species from here on) is a member of the Pooideae a sub-family of grasses from which no sequenced grasses have come. For the work we do in my lab this is exciting because it adds more depth to our analysis of changes in the grass genomes. The more distantly related grasses we can compare at the whole genome level, the better we can infer what the ancestral species that gave rise to all the grasses might have been like at a genome level. The most we know, or can make educated guesses about that species, the better position we are in to say what changed along the evolutionary paths leading to grasses like maize, rice, and sorghum. The choice of the Pooideae wasn’t at random, or even because of the sub-family’s distant relationship to other sequenced grasses. (more…)

January 14, 2010

The Newly Published Soybean Genome and Fractionation

Here’s the key statistic: The maize genome paper estimated that roughly a quarter of maize genes are currently retained as duplicate pairs from maize’s whole genome duplication, while the soybean paper estimates just over half of soybean genes are similarly retained after soybean’s (apparently slightly older) duplication. <– had it buried at the end of this, but figured it’d be more fun to start out with something cool.

But first of all, let’s do this the right way this time. Here’s the paper in Nature describing the soybean genome. Here’s one of the places you can download the entire sequence from. Hopefully that establishes, beyond a reasonable doubt, that the soybean genome has, in fact, been published. (more…)

January 1, 2010

Feeding birds on a large scale can lead to speciation?

Filed under: biology,evolution,Genetics — Tags: , , — James @ 7:14 pm

From The Hindu:

Humans are inadvertently manipulating bird genetics by innocently providing birds with feeders in winter, according to findings by German researchers. Over less than 30 generations, birds visiting British and European gardens in winter have evolved different-shaped wings and beaks, the scientists say.

In time, they could eventually become a distinct species. The birds breed side-by-side in the same Central European forests, but began to follow different winter migration routes after some discovered rich pickings from humans in Britain.

Eventually they divided into two reproductively separate groups. One continued to fly south for the winter, migrating to Spain to forage for olives and other fruits. The other got into the habit of flying a shorter distance north-west to Britain, where bird-lovers fed them.

If you’re interested and with journal access, here is the scientific paper the story is based on (from current biology).

December 30, 2009

Why I’m so Excited About the Banana Genome

Filed under: biology,evolution,Genetics,Plants — Tags: , , , , — James @ 12:01 pm

The single most consumed fruit in America, yet in the tropics this bananas starchy relatives play an even more vital role in feeding whole nations.

At the Plant and Animal Genome Conference next month (which I really wish I was going to), there will be a workshop on banana genomics, but from the abstract submitted by Carine Charron (h/t to Jeremy at the Agricultural Biodiversity Weblog) I learned that:

The sequencing phase will be completed in early 2010 and automatic annotation will take place during the first semester of 2010.

Why is sequencing the banana genome important? Three reasons: (more…)

December 11, 2009

Stalling

Filed under: evolution,Genetics,Link Posts — James @ 7:48 pm

It was a very long day at work and I have nothing interesting to tell you.

Go check out MAT Kinase and John Hawks‘s posts on how human evolution has been driven by the dietary changes of our relatively recent ancestors, farmers and herders rather than hunter-gatherers. (At least in many cases, it’s quite possible someone reading this blog can trace their ancestry back to human populations that remained hunter-gatherers into the 20th century.)

Powered by WordPress